Archive for July, 2011

Ascension of Polygon Consciousness

What: ascension.
Consider two or more points in a parametric field. When one of the points ascends to a vertical plane, the remaining points remain below the fundamental horizontal plane of the ascended point. If a line is stretched between those two points, a vertical (or semi-vertical) vector is formed. The simple awareness of the points, the field, the plane, and the higher point brings about “polygon consciousness,” which can only be observed after the ascension of the original point.
Why: polygons.
The aforesaid parametric field can hold more than one point, if the sum of all the points is less than weight (in grams) of the entire field. When one point ascends, the other points carry an equally opposing weight to the first point in the field. Whether the parametric field is measurable or not is of no concern to the second or third points. Therefore, polygon consciousness can only ascend when more than one vector, point, or plane descends.
How: conscious awareness.
When a falling object causes a vertically moving vector to lift (ascend), the downward moving object causes at least four points to move outward in a simple parametric field. Being conscious of the falling object in relation to the vertical vector almost always results in the complex awareness of a.) higher points, b.) opposing weights, and c.) ever-developing concern over the future measurement of both upward and downward moving objects. In the following image, there is a downward moving object with its shadow moving upward.

polygon ascension consciousness

polygon ascenscion consciousness

Although it looks like a button, one may wish to consider it as a “point” with an infinite number of surface vectors. Next to the upward-moving shadow, the ascension of the larger object (illustrated by the red diamond-shaped polygon) is apparent because its shadow is rapidly accelerating downward. Obviously, the only reason this happens is because both objects exist in the same field of consciousness, of “polygon consciousness.” Variations of the movements may be discussed in the future.


Secondary Escalation of One Dimensional Vector

It is quite difficult to capture the primary escalation of a vector for use in an infinite detector diagram. However, capturing the secondary escalation of a one-dimensional vector is easy when considering parallel conformity.

secondary escalation of one dimensional vector

When escalation is observed (as in the photo, above), less doubt is left to the imagination. In the future, an announcement may be made if additional photos are forthcoming.