Spectroscopic Anti-gravity Demarcation

Between any two points, there exists a random interpolation of binary queries which coexist in sub-scientific observation. The only reason such interpolation can be random is that for a binary query to sustain its existence, the initial point can be measured spectroscopically if the second point is demarcated anti-gravitically. Originally, it was thought to be a simple comparison between two elemental points. For example assume that an imaginary quantity of bismuth, carbon and bromine are compared using mass-based weight/measurement systems. Now imagine that there is no weight; no gravity, and using only anti-gravity demarcation. The results may appear to contradict previously extrapolated observation(s) when an element of randomness is interpolated non-binarily. When tertiary sound waves counterbalance the three equal measures of carbon, bromine, and random bismuth, the first elemental point becomes a spectroscopic anomaly when analyzed using thought-based conceptual comparisons. Fortunately, with the help of an attempted photo of space polarized with anti-gravity constants, these ideas may become clear. Following is a representation of an instant interpolated gravitational event:

interpolated gravity

interpolated gravity in motion

If one considers using such a photograph to think about the causal effects of systematic weight based measurements, then carbon bromine, and bismuth are no more necessary than previously imagined for said measurements. Some may take a dim stance on the conservation of energetics used at distances greater than one light year from the initial observation point, but otherworldly comparisons seem to coexist with the chance of a random interpolation.

Tags: , , , , , ,  


  1. I’ve considering attempting a photograph of sausal effects, but I don’t have most of the measuring tools for systematic weight based measurements. I appreciate knowing you have some ideas for methodology. Thank you.

  2. Carbon and bromine are not really placed near the original measurements. That is why I think your blog is very interesting.

Leave a Reply