Posted in In Depth on 07/15/2010 03:41 am by admin
When liquid material casts a shadow on a space based (spacial) vector, a shadow is formed during a particular calculation. The average distance between all liquids and all shadowed light forms have to be quantified (and calculated) when the amount of distance is desired in a space-based plane. If darkness emanate from within a given liquid, the original light must be measured if one wishes to take into consideration the aforesaid quantitative measures where vectors are required. The basis for all liquified matter (e.g. water, etc.) has to be gathered into a generalized formula when doing non-vector based calculations and comparisons on liquid matter vs less-than-shallow shadows. Angular dimensions play a part in the final measurements, but only *before* darkness displaces light. Using the following photograph (shadowed vector), an interpolation of liquid vector-based lightness might be inferred:

shadowed space based vector liquid

Note that any momentum which may be implied in the shadowed vector provides inconclusive data. This data is only tangential to the abstraction evidenced by continuous momentum when darkness mobilizes initial light vectors. One can only conclude three (3) data points. These data points should be referenced, topically, in a future document. Such a document could exist in a future 28,430 years from today’s date (if only as a back-reference to a previously implied date). If space allows, a linear photograph taken 29,000 years in the future may be posted here. With such dimensional analysis, the distance would be only an epoch used for the conclusion of the previously-mentioned data points. Continuous momentum may help average a given liquid’s distance, but only when converting non-vector based analysis on liquid matter comparisons. Further research on this matter is undoubtedly a necessity for those that consider liquid vs shadow calculations necessary.

Posted in Measurement on 05/02/2010 03:24 am by admin
Between any two points, there exists a random interpolation of binary queries which coexist in sub-scientific observation. The only reason such interpolation can be random is that for a binary query to sustain its existence, the initial point can be measured spectroscopically if the second point is demarcated anti-gravitically. Originally, it was thought to be a simple comparison between two elemental points. For example assume that an imaginary quantity of bismuth, carbon and bromine are compared using mass-based weight/measurement systems. Now imagine that there is no weight; no gravity, and using only anti-gravity demarcation. The results may appear to contradict previously extrapolated observation(s) when an element of randomness is interpolated non-binarily. When tertiary sound waves counterbalance the three equal measures of carbon, bromine, and random bismuth, the first elemental point becomes a spectroscopic anomaly when analyzed using thought-based conceptual comparisons. Fortunately, with the help of an attempted photo of space polarized with *anti-gravity* constants, these ideas may become clear. Following is a representation of an instant interpolated gravitational event:

interpolated gravity in motion

If one considers using such a photograph to think about the causal effects of systematic weight based measurements, then carbon bromine, and bismuth are no more necessary than previously imagined for said measurements. Some may take a dim stance on the conservation of energetics used at distances greater than one light year from the initial observation point, but otherworldly comparisons seem to coexist with the chance of a random interpolation.